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Fluta's density, but also the Fluto atmosphere models,
reassessmient of ocoultation ohservaticoms,

Chr data also set an upper limit for o putative atrmosphere for
Charem, By combining the stellar fuses observad at the Paranal and
H Leoncito obsenatories, we derive a simthetic light carve, as shown
in Fig. 2 The effect of an atmesphere depends on the surface
pressure, the nature of the gas and the teraperature profile, We
assumied oo cases. One is that of an jsothermal nitrogen (M)
atmesphere at T, =50 K, the recently estimated mean dayside
Charem surface ternperzture’”, The other is a pure methane (CH,)
atmosphere, with a teraperature increasing from 56 K an the sorface
o 100K abeve 2k, due to solar heating, as is the case for Pluto's.
atmosphere’!, The twi cases indicate upper limits of 110 and 15 nhar
1 3arh, respectively, with comespending upper Himits of 4.1 and 1.5 cm
amagat for the vertical column densities, Lirits obtained from the
1980 Charon steflar ocoultation were about two and ten times larger
for Ny and CH., sespectively’, Mote that in the limiting cases
preserted Dweve, refraction of sdlar rags by the atmesphere would
case i reduction of Claron’s shadow eadiug by about 10k, when
comipared to the acteal radius, B, Corsequently, if an atmosphere
ie detecred at e levels in the futuee, sudh effects should be
comsidered when deriving £,

Thee wery Lo wpepeer Lt For an atees phiere around Charon i not
surprising, given cdfimates of escape rates'. Tle apper limit e
derive for a puse methane atmesphere 5 also oonaastent with the
ahserseeof o CH.L boe signature in it near-infrared spectram'™. Tn facr,
& 15nhar CH, stmosplere is in equilibriam with CH, jce at 41K,
misch less than the 56K quoted above, Methare ioe could seill e
present in restricted, colder, regions of the surface, For N, 2 110 mbar
atrrspliere would imply an even lewser equilibrium temperature
1T = 31 K, requirmg that 1 ice be confined 21 best 1o high northem
Lutitudes andfor to penmanently shadesd vegions of the seellite,
Tl samme i true for other candidates, like OO, which would require
terneratures &8 low as 35

rough a
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LETTERS

Structural diversity in binary nanoparticle

superlattices

Elena V, Shavchenko =+, Dmitri V. Talapin'*#, Nicholas A. Kotow”, Stephen OBrien” & Christopher B, Murray'

Assernbly of sl bullding blocks such as atoms, molecules and
namparticles into macroscopic structures—tlet is, Tottom up’
asserribly—is a theme that mns chemlstry, heology and
matertal schence, Bacterta', macromolecules” and panoparticles®
can seli-asemble, generating ordered structures with a precision
that challenges current lithographic techniques. The assembly of
nanoparticles of two different materials into a binary nanopartice
superlattice {BNSLI can provide a general andllmwpulll
1o a large variety of materials (metamaterials) with
controdled dmll composition and Ilﬁ'l. p]ac:nzm af the
ization of the ticle packing density

has been prqmud as the driving force for BNSL formation ™,
atl only a few BNSL structures have been predicied 1o be
thermodynamically stable. Recemtly, colloidal coystals with
micromelre-scabe kattice spacngs have been grown from oppo-
sitely charged polymethyl methacrylate spheres'™''. H:rr we
demamstrate fnnn.ul.lm of more than 15 dilferent BNSL struc-
tueres, wsing combinations of semiconducting, metallic and mag-
metic mpl.rl.u:l! bllung blocks. A least ten of these DdhmH
crystalline structures have not been reported previousdy, We
demonstrate that electrical charges on sevically stabilized nano-

icles determine FINSL stoichi v additional contrit
o entropic, van der Waals, steric and dipolar forces stabilize
the variety af ENSL structures.

Face-centred -cubic (F.c.c.) ordering of monodisperse hard spheres
dispersed ina liquid permits karger Iocal free space mailahle for exch
sphere compared to the unstructured phase, resulting in higher
trandational entropy of the spheres, When the whume fraction of
hard spheres apprmaches —~55%, this ordering enhances the total
entropy of the spstem and drives the ondering phase transition.
Entropy-driven crystallizmtion has been studied in great detail both
heoretically* lrl.??’;pﬂ"im'nl‘i“yﬁll manodisperse latex particles,
whose behaviour can be approsimated by hard spheres™', In a
misture containing spheres of twe different sizes (radii B and
Riarge s the packing symmetry depends on the size ratin of the small

cﬁnrar spheres (% = R, oupf Riage )™ Calculations show that
.lmf'rnhh.' n# hard spheres into hinary superlaitices isnstractural
wwith Ml ALB, and Ma¥ng o can be driven by entropy shone without
any specific energetic interactions between the spheres™, Indeed,
Madny - and AlB-type assemblies of silica particles were found in

natural Brazilian opals' and can be grown from laiex spheres'™. Ina
certain 5 range, the padking density of these structures cither excoads
ar is very dise to the dersity of the dose-packed foc. lattice
(L TH05), while strsctares with loweer packing densities are predicted
i be umstable',

Thespite these pradictions, we observed an amazing, variety of
TiNELs that self-assernble fom collnidz] solutions of neardy splerical

manoparticles of diffeent materials (Fig, 1), Coberently packed
dvmaing extend up o 10w in lateral dimerdions, and can display
wiell defined facets (Supplementary Fig. 1 In ey cases, sevieral
BNEL structures form simultaneousy on the dame substeate, wnder
sdentical experimental conditions. The same nanoparticke miviure
can asgermhle o BNSLs with very daiferent stoschiometry and
packing symmetry. For example, 11 different ENSL strsctures were
prepared from. the same batche of 6.2nm PhSe and 20nm Pd
nanoparticles (Supplementary Figo 20 We alo observe that, in
gemeral, BNSLs tolerate much broader 4 ranges: than hard spheres:
for example, All-type BNSLS assembled from different comiba-
matiors af Plde, Phs, Ao, Ag, Pd, Fe, O, CoP't, and Bi nanoparticles
2 hroad = range |Supplementary Fig. 2. Further, we oheerve
ENals that could not be wdentified 25 sectructual with specific
mtermetallic compounds (Supplementary Fig 20, Thas observed
structural diveraty of BNSLE defies traditional expectabions, and
shows the great potential of modular seli~assembly at the nanoscale,

The formaton of hinary stroctures with peckang density sigrafi-
cantly bower than the dersity of smghe-phase Cec. doss pacdding
(DTH05} rides oul entropy as the mean dnving fora: for nanoparticle
ardering, Morever, van der Waals, steric or dipolar mlerparticle
interactioms are not sufficient to explain iy these low density BNS1Ls
form, instead of their constituents separating inén single-component
m]x'rhlhcm. Opposite dlectrical charges on nanoparticles could
impart a specinie atfmity of one type of particle {for example,
dodecancthiol-capped Au, Ag. Pdi for another {typically Phse,
FhS, FeyOy, CoPty and so om, capped with long chain carboadic
acids), If nanoparticles are oppositely charged, the Coulomb
potential vould stabilize the BNSE wlnr destabilizing the single-
component superlattices, The electrical charges might be

& on sterwally stahilized nanoparticles even in nom-polar
solvents'™ ™,

Ter measure charges on the nanoparticles that form our BNST, we
studied the electrophoretic mobility of PhSe and Au nanocrpstals,
Laser Doppler velocimetry allows the distribution of electrophoretic
miohilities within an ensemble of nanoparticles to be messured. The
electrical charge {7, in units of ) of a spherical partide in a low
dielectric sodvent in absence of doctrolyte can be caloulated from the
elevtrophoretic mobility (u, | where g = Ze/{3aga), rrviﬁuﬂsmﬂty
of the sohvent znd a |sl‘ru_h}.wl.1ttdrlwnc iameter of a partide. W
@ = L, we obtain g =037 % 107 Fom' ¥V s7 ! These c.chu-
Lated values agree well with the peaks in the experimentzl mobility
distribution for 7.2-nm-diameter PhSe nanocrystals in chilomdfomm
{Fig. 2al. Onwing to the organic coat (oleic acd), the effective
hydroedhmamic radine of PhSe nanoorystals extends beyond the
crystalline core by 1-2nm, depending on the density of surface
coverage, The peaks in the mohility distibation carve indicate the
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presence of particles with charges —e, @, ¢ and 2 in 2 aolloidal
solution of monodisperse Phie nanocrystals,

Wit fiourwd that the clurges on Phée nanocrvstals can be altered
by adding surfactant molecules Fke carboiylic adds and tri-n-
albylplspline ocides. Addition of oleic acid inoeases the popu-
Latiom of positively changed Phie nanoorystals at the expense of the
megativay charged and neutral naneorystale. Depending on the
ameant of acid added, the majerity of renocryetals can be adjusted
o v e ther oo o twe positive charges {Fg. 2hand ¢). Addition of
i acid incresses the solutions” viscosiny, cauing the peaks o shift
worweards lower mobiliny {compare Fig. Za—c), The additien of tri-n-
actylphesplare eocide (TOPO) increases the popalation of negatively

Figur 1 | TEM images of the characteristic prajectisns of the binary
superlattioes, sell-assembled fromn differest nanepariicles, and medelled
it calls of thi The
superlattices are assemhled fram 8, 154 nm y-Frgy and S0nm Aus

B, 7.6 nm PhSe and 5.0pm Au; &, 6.2 nm PhSe and 38 nm Pd: 8, 6.7 nm PhS
and 3dinm Pd; e 6.2 nm Phie and 10mm P4 F 5.6 nm Phie and 30 nm Pd;
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charged Phée nanoarystals and reduces the concentratiom of posi-
tively charged nanccrystals (Fig. 2 Swveps of many samples
revealed that the additives reliably dhifted the distribution of dhage
tates; howeves, the initial proportion of partides in-each charge state
wast dependent sormesdiat on saple processing, Both neutral and
regatively charged nanoparticles were detected in dhlorofonm solu-
e af 4.8 nim dodecanethiol-capped Au nasocrpstals (Supplemen-
tary Fig. 5k After addition of oleic acd most Ao nancparticles
becorme negatively chargsd (Fig. 2e), whenss the addition of TOPC
recutralizes the Au nanopartiche: (Fig. 261 The cluarge on PhSe and
Au nanaparticls could orginate from deviations in nanocryssal
atoichiometry and adsorptionidesorption of charged capping

viog

£ 7.2 e PhSe and 4.2 nis Ag: b, 6.2 s PlSe and 3.0 asm Pl |, 7.2 am Phse
and 5.0 nm A L5 A nes Phfic and L0 am Fds b, 7.2 am Phiie and 4.2 nos g
and 1, 6.2 nm PhSe and 30 nm Pd nannparticle. Scale bars: 8-, &, 1, L,
Mimmsd, g h, 1inm, The batice projection is lihelled in rach panel shove
ithe sl har, The modslled projections af the hinary superlatiicrs are shown
in Supplementary Fig. 4.
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Tigands, Although tlese sdditives are efoctive in adjusting the partiche
charpe states, the specific interactions by which this charges taring
oocurs will peguie ferther study (Supplementary Discussion 1,

In the presence of okdc aod, Phie and Au nenoparticles ane
oppositely clarged (Fig. 2e). The Coulomb potential between twe
appositely chiarged nanoparticles (£ = * 1] separated by 10nm of a
solvent like chilorofirm @ cormparabile with ETan room remperatane,
and sodutiens of mived Phée and metal nanoparticles retain stabiling
for several weeks, The relatively amall interparticle potential
fvonrs armealing of the BNSLs as they growe For 2 NaCl-type
BMNSL with &, =1, & 1 el the mearest-reglbour disance
Ry = 115 v (Fig. 1a), the Coulormb birding energy per unit cdl is
cstimated to be U, g = MELZ_ ¢ fl4nesR) = —0.1eV (or about

KT at the superlattice growth temperature, 50°C), whene
M 17476 @5 the Madelung constant. The Coulormb binding
energy is comnparable o the van der Waals attractive energy expectiad
for a NaCl-type BNSL. The energy of dhort-eange van dor Wil
foonoes (LR can rival bong-range Coulomb enrgy {—1/R) only at
e manometre scale, In BNSLs, we can negect soreening of the
Condeamiby potential by charged species in solution becanse the Debgpe
saveering length (- 107" am) is much langer than B, irefs 10, 11, In
an AB, BNSL wdhere A and B hold oppesite charges, the Coulomb
polential per AR, ‘molecule’ 3 U,y = —ee+@f 42,0800,
where @ oand @ are podtive constants and N s the number of
asernbled nanoparticles {Supplementary Ditcussion 20,

Coudomb energy determines the gmduvometry of the growing
BNSL An extended three-dimengional BRNSL can form omly if the
positive and negative charges compensate each other. IF during
grovath the BNSL accumulates nomecompensatid charge, eventusally
[,y chamges sign from negative to posative and the growth s eli-
lirnating, The superlatticos nucdetion stage shoubd be less sensite 1o
the Coulomb mieactions. Indeed, we ohserved that many amell
domaing with different BYAL structures can simul tanecusdy nocleate
an the same substrate, but therr g2 doct nal excved ~ 1 nano-
particles. Chnly ome or twe structures geow 1o lrger lkngth scales
{101t particles), BNSLs with mamy particles per unit cell ifor

LETTERS

cxarnple, AB, A, AL, AB ) might fonm when both charged and
meettral nanoparticles of type B are incorporated into the strachures,
Tlee presence of differently charged nanoparticles in the aolloidal
solutions (Fig. 2aand Supplementary Fig. 5) could also contribute 1o
e sirvmltareous foemation of diffevent BENSLs, Intentional additien
of a large concentration of changed species into a solution of
nanopartiches might reduce the Debye screening lengtlh diwm o
R, relaxing the strict vules for BNSL diarge neutrality and allowing a
e of new structuees o be formed ™.

Tunirag the dharge state of the nanepartiches allows us wo direct the
self-msernbly process. Reprodocible switching between difforent
BNEL structuses bas been achieved by adding small ameunts of
carboorpdic acids, TOPO or dodecyarmine o celloidal solutions of
Phée (PhE, FeyOh, and a0 on) and metal (Aa, Ag, Pd) ranocrystals,
Figure 3 dernonstrates lwny these addiives divect the formation of
specific BNSL structures, Comibining native solutions of i Fhée
and 30 Pd resoparticles (particle concentration ratin —~1:5)
st in tle formation of sevel BNSL stractues with Mging and
cuboctahedral AB, lamices dorninating. Hewever, the same nano-
partiches assemble into arthorhombic AR and Al -type super-
lattices. after adding oleic acid {Fig. Ja), and into Na¥n - or
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Figure 2 | Dlectrophoretic mobility of PoSe and Au nanscrystals in
chioroforma. a-d. [Yearibuiben of elecirophoretic mohiliny fer 7.2 nm Phie
mamacrystali. a, PhSe nanocrystab wished wo remove excees of capping
ligamds. The grey bars shev mobilities predicied for nanocrystals with
chamges el — 1,0, L and 2 fin usits of ef. B-d, Ebctraphaectic mobility of
Ph%e nenocrystals in the presence o b, 002 M adeic acid, € 0006 M oleicacsd
and d, 005 M 15 y ine axsde. 8, ¥, C isan of
eleciruphare i molilities of e and 4.6 nms Au nanserysials §
presence of &, 0412 M o L LGS M tri-m-nectlphasghine nx
resprctively. a,u., arhitrary umits

Mkt (10 o W1 %)

he

czrmPbic ®sonmaAu | 00 7.2 e PhSa ®43nmAg

Figure 3 | TEM images of binary sapesiattices salf-assembled s the
prosente of 4 mM clesie acid (oft eoluma) asd & mM trisn-ectylphosphing
axide, TOPO {right calimn). & 6.2 pm PhSe and 3.0nm Pd

nannpartiches seli-assembled into artharhambic A B- and A% -type BNSLs,
and B, inin MaFn -iype BNEL. ¢, d, 72 nm Phie and 4.2 nm Ag
nanopartiches sebf-assenshled into orthorhambic AR and cuboctahedral
ATy BNSLs, respeciively. o, 6.2 nm Fhie and %0 nm Aumanopariicles sli-
assemshled into CuAu-rype and CaCu-type BNSLs, respectively.
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ﬂml‘ | TEM irnages and progosed unit cells of by supeisttices

fram and spherical nanaparticles,
. b, Slf-asezmbded fram LaFs irlangular nanaplates 190 nm side nmi.
S.0mm Au nanapartides; € slf bled fram LaFy i

cuboctzhedral AR, -type BNSLs after the addition of dodecylamine
ar TOPO, respectively (Fig. 5hi. In the AR -type BNSL, metal
particles assemble into iensabedral | MNa¥ny .0 or cuboctabedral
tcuboctabedral AR5 dusters, with each large PhSe particle sur-
romnded by 24 metal spheres at the vertices of 2 snab cube’, In the
presence of TOPO the metal nanopartides are neutral (B 2f),
faveeuring forvmation of the Pd, s (8w, 5 Ag o) clusters, The clusters of
metal nanoparticles in turm provide sercening of the charges on Phie
manorystals in the AR, -type BNSL

Surveys of many samples sho that the addition of 2 carbeoadic
acid o solutions of Phoe—Pd, Phde-An, PhSe-Ag and Phie—Fe
nanaparticle mistures results in cither AR or AR, superlattices
(Fig S, ¢, wheneas the addition of TOPO to mixtures of the same
nanopartices favours growth of AB (iF 5 < —0.65) or A,
lif ¢ = —(nish) BWSLs (Fig. 3. £). Thus the space-filling principles
and particle charging work in combination o determine the struc-
tue, Adjusting the relative comcertrations.of A and B particles canbe
e a6 an additional eool with which to contred the BNSL structare,
For examiple, in presence of TOPC, AR, BNSLs can form when the
A paticis — 020, wheress exchusiveby AR, forms in the presence of
Larpe ewcess B particles,

Tn contrass to particles with amorphous or polyorestalline mor-
phodogy, rancorystale alloa exploitation of the inlwrent orystal
anisptropy o precischyengineer nancorystal shape™, The nanocrysal
shage car in twem be wsed as a posserful toed o engineer the strocture
ofthe self-gssembled BNSLs, Forexample, Fig. 4 shows several BNSLs.
scdf-assermbled from LaFs triangular ranoplates and sphierical Au or
Fhée nanocrystals. In the LaF—du system, the LaF, nanoplates lie
flar on silicon exide srface (Fig 42) and stand on edge when
assernbled en amerphous carbon (Fig b and <), demonstrating
T the clusice oof sabsteane can be wed to contnl the BNSL structure,

Tt is specifically at the ranoscale that the van der Waals, electro-
atatic, steric repalion and the divectienal dipolar interactions can
contribute to the interparticle potential with comparahle
weighit™ 0 Thse, together with the effects of partiche substeate
interactions ared space-filling (entropic) factors, cormbine o deter-
mine the BMAL steacture, The nor-equilibrivm namre of our
evaprirative sdf-asembly prooes adds additional compledn™, Pre-
cise comitral of nanoparticle size, dhape and composition allows w 1o
engineer dectronic, optical and magnetic propenties of nancparticle
il dliveg Bloscks, Assemibling these nanoscale building blodks into o
widke rage of BVSL systens prenides & peserful medular apposch
o the disign of ‘et ials’ with pr Bl phiysical and
chemical properties.

METHODS

Nanoparticle synthesis, wa, Ag aed Pd naeoparticles were prepared by
modifying the method of rel, 27, Metal sabs were dissolved in 16 ml of toluene
with ultrsouication i the presence of dodecyldimethylunscesam bromide

and &2 nm Phis nanocrysials, The inseis show 3, o magnified image, and b,
&, propased unit cells of the correspending superlattices. The structure
shnem in @ Farms en sllicon owkde surfaces. whibs soructures shown in boand
dorm preferentally on amarphous carben subsirie

For spntasis of 30ne Au and 4.3 om Ag eanopartichs, we used
s and (U123 ARNLY. respec and (1925 g DDA, 30nem Pd
ranocrysals were sprithesived fromn QUR3T g PACTy with (0037 g DB Bony
nicrclinres of o 948 aqeeow solunon of NaBH, were added dropewise o the
sodutiodn ol wnetad sk kllh»lp\:\mussmmt, Afer 20 ki, 048 al 1 Jc'hh_lll:l;n!l
s aidided and i dibeat T

wan ||m|p|lin||‘3’nllllgrl|urnl and the sl rodisparsnd in 10ml tolsane in
tha presanen of (b ml 1-doducanthinl and neflaxnd fr 30 der nitrogen,
Ferldy namocrysiak: were symhesmed by meshods adapeed froe rell 28 Bricky,
Ulnm and 134 pea Pedy ranncrysials wers spnthesized by impecting 1.2 ml won
et Wml mincylimine m the preesce of 065 g aleic aad ar
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